BTK Inhibitors in CLL and Lymphomas: Overview and Current Indications

Covalent :

IMBRUVICA® (Ibrutinib)億珂® 膠囊 CALQUENCE (Acalabrutinib)克瘤康膠囊 BRUKINSA® (Zanubrutinib)百悅澤® Non-covalent Pirtobrutinib (Jaypirca)

Clinical pharmacist : Lihua Fang

2024/11/27

Outline

- BTK 治療歷史 (History of Bruton's tyrosine kinase)
- Role in Cancer treatment (Type of cancer, Driven gene, role of treatment)
- Drug mechanism
- Indication
 - Clinical measurement
 - Followed up : Lab data
 - Drug studies and comparison (ORR, OS)
 - ADR
- Side effect management
- Education
- Conclusion

Ogden Bruton: Bruton's Agammaglobulinemia

- Chief of Pediatrics at Walter Reed National Military Medical Center
- Described "a hitherto unrecognized entity manifested by complete absence of gamma globulin with otherwise normal serum proteins and recurrent pneumococcal sepsis is described in an 8-yr-old male"
- The causal genetic defect has since been mapped to the gene for Bruton's tyrosine kinase (*BTK*), at band Xq21.3
 - BTK plays a crucial role in B-cell maturation, but when mutated can result in the immunodeficiency disorder XLA
- Patients with XLA have normal pre–B-cell populations in their bone marrow but these cells fail to mature and enter the circulation

A PI3Kδ Inhibitor for B-Cell Cancers Idelalisib

B 細胞受體 (BCR) 訊號傳導會活化 磷酸肌醇 3- 激酶 (PI3K),產生第 二信使磷酸肌醇 3,4,5- 三磷酸酯 (PIP3), 進而活化布魯頓酪氨酸激 酶 (BTK) 和 AKT · AKT 是一種可結 合 PIP3 的促生存激酶,在許多實 體腫瘤中扮演關鍵角色。 Idelalisib 是 PI3K δ 異構型的選擇 性抑制劑,針對惡性 B 細胞中 BCR 下游的信號轉導,而 ibrutinib 則針對 BTK。PI3K 和 BTK 也會在 B 細胞上許多其他受體的下游被活 化,包括 CD40、細胞激素受體、 化學因子受體和 toll-like 受體 (TLR)。BCR 由與 Igα 和 Igβ 兩種訊 號鏈相關的抗體重鏈和輕鏈組成

Bruton's tyrosine kinase (Btk): cytoplasmic protein tyrosine kinases and is expressed in many hematopoietic cell lineages. Dual mechanism of action:

(i) inhibition of BCR-dependent B cell proliferation and autoantibody production

(ii) suppression of myeloid cell-dependent inflammatory cytokine production

BTK Inhibition Targets Both Adaptive and Innate Drivers of Immune-Mediated Disease

Lopez-Herrera. J Leukoc Biol. 2014;95:243. Langrish. J Immunol. 2021;206:1454.

Slide credit: clinicaloptions.com

B-Cell Malignancies: Cell Types and Associated Diseases

Burger. Nat Rev Cancer. 2018;18:148. Marti. In: Isvoranu, editor. Lymphocyte Updates - Cancer, Autoimmunity and Infection. 2017. NCI. Adult ALL treatment (PDQ[®]). NCI. Adult NHL treatment (PDQ[®]). NCI. Adult HL treatment (PDQ[®]). NCI. Plasma cell neoplasms (including multiple myeloma) treatment (PDQ[®]).

BTK in B-Cell Malignancies

- The BCR pathway plays a role in the growth, proliferation, and survival of normal and malignant B-cells
- BTK an essential enzyme in the BCR signaling pathway; downstream of BCR
- Inhibition of BTK can lead to the downstream mitigation of cell growth, proliferation, adhesion, migration, and survival of malignant B-cells
- BTK inhibitors approved in multiple lymphoma settings: CLL, MCL and MZL, and Waldenström macroglobulinemia

Covalent vs Non-Covalent BTK inhibitors

Category	Covalent BTK Inhibitors	Non-Covalent BTK Inhibitors
Mechanism of Action	Irreversibly bind to the C481 residue in BTK.	Reversibly bind to BTK, independent of C481 residue. (Hydrogen bonds, van der Waals, and electrostatic.
Examples	Ibrutinib, Acalabrutinib, Zanubrutinib	Pirtobrutinib (LOXO-305)
Activity Against BTK Mutations	Limited activity in C481-mutated BTK (e.g., C481S mutation).	Active against C481-mutated BTK.
Selectivity	First-generation inhibitors (Ibrutinib) have off-target effects. Second-generation inhibitors (e.g., Acalabrutinib, Zanubrutinib) are more selective.	Highly selective, fewer off-target interactions.
Tolerability and Safety	Side effects: Atrial fibrillation, bleeding, hypertension (higher with Ibrutinib). 2 nd generation inhibitors have improved safety profiles.	Better tolerability, fewer cardiac and bleeding complications.
Clinical Applications	First-line and relapsed/refractory settings in CLL, mantle cell lymphoma (MCL), and other B-cell malignancies.	Primarily studied in relapsed/refractory settings, especially for patients resistant to covalent inhibitors.
Advantages	Long-lasting inhibition; established efficacy in frontline and relapsed settings.	Effective in BTK C481-mutant cases; fewer side effects; potential in resistant cases.
Limitations	Resistance develops over time (C481 mutation); some toxicities (e.g., cardiac events, bleeding).	Limited current availability and approval; ongoing trials .

Bruton's Tyrosine Kinase (BTK) Inhibitors in Chronic Lymphocytic Leukemia (CLL)

Bruton's Tyrosine Kinase (BTK) Inhibitors in Chronic Lymphocytic Leukemia (CLL)

Bruton's Tyrosine Kinase (BTK) Inhibitors in Chronic Lymphocytic Leukemia (CLL)

Resistance to Bruton tyrosine kinase inhibition in CLL and non-Hodgkin lymphoma

DOI:10.1111/bjh.18418

Indications for Available BTK Inhibitors

Ibrutinib

Adults with **MCL** treated with ≥1 prior tx

Adults with **CLL/SLL** with or without 17p deletion

Adults with Waldenström macroglobulinemia

Adults with **MZL** requiring systemic tx and treated with ≥1 prior anti–CD20-based tx

Adults with **chronic GVHD** after failure of ≥1 lines of systemic tx

Acalabrutinib

Adults with **MCL** treated with ≥1 prior tx

Adults with **CLL/SLL**

Zanubrutinib

Adult with CLL or SLL

R/R Follicular lymphoma (in combination with obinutuzumab) ≥2 lines of systemic therapy.

Adult with R/R Mantle cell lymphoma treated with \geq 1 prior tx

Adult with R/R MZL treated with ≥ 1 Anti-CD20 base Tx

Adult with Waldenström macroglobulinemia

Mechanisms of Action and Properties of Approved BTK Inhibitors

Ibrutinib ¹	Acalabrutinib ²⁻⁴	Zanubrutinib ⁵
 First-generation BTK inhibitor 	 Second-generation BTK inhibitor 	 Second-generation BTK inhibitor
 Potent and irreversible 	 Highly selective, potent, irreversible 	 Highly selective, potent, irreversible
 Approved: CLL/SLL ± del(17p) WM MCL with ≥ 1 prior therapy MZL in patients who require systemic tx and had ≥1 CD20-targeted tx Chronic GVHD 	 Approved: MCL with ≥1 prior therapy CLL/SLL 	 Approved: MCL with ≥1 prior therapy Adult with R/R MZL treated with ≥ 1 Anti-CD20 base Tx CLL/SLL WM
 Once-daily dosing 420 mg PO daily for CLL/SLL, WM 560 mg PO daily for MCL, MZL 	 Twice-daily dosing 100 mg PO q12h for MCL, CLL/SLL 	 Once-daily dosing 320 mg PO daily for MCL Twice-daily dosing 160 mg PO q12h for MCL

Current Treatment Landscape in CLL

First-line Treatment Options No del(17p)/TP53 mutations

FCR (*IGHV* mutated and <65 yrs/fit) Ibrutinib Acalabrutinib ± Obinutuzumab Zanubritinib ± obinutuzumab Venetoclax + obinutuzumab With del(17p)/TP53 mutations Ibrutinib Acalabrutinib ± Obinutuzumab Zanubritinib ± Obinutuzumab Venetoclax + obinutuzumab

Second-line Treatment Options

With or without *del(17p)/TP53* mutations

Ibrutinib Acalabrutinib Zanubritinb Venetoclax + rituximab Idelalisib + rituximab Duvelisib

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- Chemotherapy and Chemoimmunotherapy
 - Alkylating Agents: chlorambucil and cyclophosphamide
 - Fludarabine-Based Regimens: In the 1990s, fludarabine superior efficacy over chlorambucil. Fludarabine with cyclophosphamide (FC),
 - Chemoimmunotherapy (FCR): The addition of rituximab, fludarabine and cyclophosphamide (FCR) (high response rates and prolonged remissions)
- Monoclonal Antibodies (anti-CD20 monoclonal antibody)
 - Rituximab: as backbone for combination regimens.
 - Newer anti-CD20 antibodies : Ofatumumab and Obinutuzumab

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- BTK Inhibitors (Bruton's tyrosine kinase inhibitor)
 - The introduction of ibrutinib in the 2010s marked a shift to targeted therapies for CLL.
 - Remarkable efficacy in relapsed or refractory CLL and significantly improved PFS and OS, especially in del(17p) and TP53 mutations.
 - However, long-term use was associated with cardiovascular side effects.
 - Second-Generation BTK Inhibitors : Acalabrutinib and Zanubrutinib (similar efficacy to ibrutinib but with reduced toxicity)
- BCL-2 Inhibitors
 - Venetoclax: targets the anti-apoptotic protein BCL-2, which is overexpressed in CLL. (high efficacy in combination with anti-CD20 antibodies in del(17p) or TP53 mutations)
 - Deep remissions and are used as a finite-duration (有限) treatment, allowing for treatment-free periods after therapy completion

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- PI3K Inhibitors
 - Another targeted option with relapsed/refractory CLL. often combined with rituximab, showed efficacy in heavily pretreated patients. However, the risk of immune-mediated side effects has limited their use in favor of BTK and BCL-2 inhibitors

Current Treatment Landscape in Mantle Cell Lymphoma

First-line Treatment Options

Aggressive Chemotherapy

R-DHAP (cisplatin, carboplatin or oxaliplatin) R-CHOP/R-DHAP NORDIC (maxi-CHOP/R + HD cytarabine)

 $\frac{\text{Consolidation and Maintenance}}{\text{HDT} + \text{ASCT} \rightarrow \text{R maint for 3 yrs}}$

Second-line Treatment Options Chemoimmunotherapy

Less Aggressive Chemotherapy BR VR-CAP R-CHOP Lenalidomide + R

Maintenance After R-CHOP: R maint until PD

Slide credit: clinicaloptions.com

Marginal Zone Lymphoma and Waldenström Macroglobulinemia: A Brief Overview

Marginal Zone Lymphoma

- Rare diseases with a heterogeneous clinical presentation
 - Extranodal MZL of the MALT is the most common (~70% of MZLs)
 - Splenic MZL (~20% of MZLs)
 - Given their rarity, it is often difficult to conduct clinical trials specifically designed for patients with MZL
 - Ibrutinib and Zanubrutinib safety, efficacy has been established

Waldenström Macroglobulinemia

- Indolent lymphoplasmacytic infiltrate in bone marrow and IgM paraprotein in serum
 - Ibrutinib has demonstrated efficacy as monotherapy for rituximab-resistant cases, especially with MYD88 mutations
 - Trend toward improved responses and less toxicity with Zanubrutinib

Dosing and Administration of BTK Inhibitors in CLL

	Ibrutinib ^[a]	Acalabrutinib ^[b]	Zanubrutinib ^[c,d]
Dosing	420 mg orally once daily	100 mg orally twice daily	160 mg orally twice daily or 320 mg orally once daily
Half-life	4 to 6 hours	1 hour	2 to 4 hours
Median T _{max}	1 to 2 hours	0.9 hours	2 hours
BTK occupancy	90% up to 24 hours after doses of 2.5 mg/kg/d	≥ 95% over 12 hours after 100 mg every 12 hours	100% up to 24 hours at total daily dose of 320 mg
Dose forms and strengths	Capsules: 70 mg, 140 mg Tablets: 140 mg, 280 mg, 420 mg, 560 mg	Capsules: 100 mg	Capsules: 80 mg
Renal impairment	No adjustment	No adjustment	No adjustment
Hepatic impairment Child-Pugh Class A (mild) Child-Pugh Class B (moderate) Child-Pugh Class C (severe)	140 mg daily 70 mg daily Avoid use	No adjustment No adjustment Avoid use	No adjustment No adjustment 80 mg twice daily

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa™ (zanubrutinib) [PI]. 2019; d. NCCN. CLL/SLL. Version 4.2021.

Kinase Selectivity of BTK Inhibitors

Kinase Selectivity Profiling at 1 μ mol/L (in vitro)

IC₅₀/EC₅₀ (nM) (Inhibitory Concentration 50%)/(Effective Concentration 50%):

Kinase	Ibrutinib	Acalabrutinib	Zanubrutinib
ВТК	1.5	5.1	0.5
TEC	10	126	44
ITK	4.9	>1000	50
BMX	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5

Larger red circles represent stronger inhibition

Kaptein. ASH 2018. Abstr 1871.

Potential Effects Due to Off-Target Inhibition

BTK kinase	TEC kinase	ITK kinase	BMX kinase
Platelet effects ^[a,b]	 Platelet effects^[a,b] Tyrosine-protein kinase expressed in hepatocellular carcinoma. 	Antibody-dependent cellular cytotoxicity ^[a] Interleukin-2- inducible T-cell kinase	 Cardiac toxicity^[a] Bone Marrow tyrosine kinase on chromosome X.
EGFR kinase	ERBB4 kinase	JAK3 kinase	BLK kinase
 Rash^[c] Cardiac toxicity^[d] Diarrhea^[c] 	Cardiac toxicity ^[a,d]	Immune effects ^[a]	•

a. Berglöf A, et al. Scand J Immunol. 2015;82:208-217; b. Shatzel JJ, et al. J Thromb Haemost. 2017;15:835-847; c. Lipsky A, et al. Hematology Am Soc Hematol Educ Program. 2020;2020:336-345; d. Estupiñán HY, et al. Front Cell Dev Biol. 2021;9:630942.

Potential Mechanisms of Off-Target Inhibition

Stephens. Blood. 2019;133:1298.

Ibrutinib by Janssen Biotech, Inc. and Pharmacyclics LLC, an AbbVie company: Summary of Trials Supporting Approvals

CLL

Ę

Approved in frontline and relapsed/refractory settings, various studies

- ALLIANCE (A041202): First-line BR vs ibrutinib ± rituximab in CLL/SLL¹
- Phase III E1912: Ibrutinib

 rituximab vs FCR in
 patients ≤70 yrs with
 previously treated
 CLL/SLL²
- Phase III RESONATE 2: ibrutinib in older patients with treatmentnaive CLL/SLL³

Approval based on phase II PCYC-1104 trial of previously treated patients with relapsed or refractory MCL⁴

MCL

Approval based on openlabel phase II study in previously treated patients.⁵ Single-agent ibrutinib induced durable remissions (ORR: 58%) with a favorable benefit–risk profile.

MZL

 Inhibition of BCR signaling with ibrutinib provides a treatment option without hemotherapy for an MZL population with high unmet need

WM

Evaluated in both the frontline and relapsed/ refractory settings⁶

- Median follow-up:
 59 mo
- ORR: 90.5%
- Major response rate: 79.4%

1. Shanafelt. NEJM. 2019;381:432. 2. Woyach. NEJM. 2018;379:2517. 3. Burger. NEJM. 2015:373:2425. 4. Wang. NEJM. 2013;369:507. 5. Noy. Blood. 2020;24:5773. 6. Treon. JCO. 2021;39:565.

Phase II PCYC-1104: Targeting BTK With Ibrutinib in Relapsed/Refractory Mantle Cell Lymphoma

Wang. NEJM. 2013;369:507. Wang. Blood. 2015;126:739.

Ę

Slide credit: clinicaloptions.com

Acalabrutinib (by AstraZeneca): Key Studies

CLL	MCL
Phase III ELEVATE-TN: acalabrutinib ± obinutuzumab in patients with treatment-naive CLL ¹	Phase II ACE-LY-004 trial: open-label, single arm study of acalabrutinib in relapsed/refractory MCL ⁴
Phase III ASCEND: head-to-head study of 2 small- molecule inhibitors, idelalisib and acalabrutinib, plus BR or rituximab ²	
Phase III ELEVATE RR: head-to-head study of acalabrutinib and ibrutinib ³	

Ę

Phase III ELEVATE-TN: Acalabrutinib ± Obinutuzumab vs Chlorambucil + Obinutuzumab in Treatment-Naive CLL

- Primary endpoint: PFS by IRC of acalabrutinib + obinutuzumab vs obinutuzumab + chlorambucil
- Key secondary endpoints: PFS of acalabrutinib vs obinutuzumab + chlorambucil, ORR by IRC and investigators, time to next treatment, OS, safety

Sharman. Lancet. 2020;395:1278.

ELEVATE-TN: PFS With 4-Yr Follow-up

Sharman. ASCO 2021. Abstr 7509.

Ę

Slide credit: clinicaloptions.com

Acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial

Randomized, open-label, phase III noninferiority trial

- Primary endpoint: noninferiority of IRC-assessed PFS (upper bound of 2-sided 95% CI for HR <1.429)</p>
- Secondary endpoints: any-grade atrial fibrillation/flutter, grade ≥3 infection, Richter transformation, OS

ELEVATE-RR: PFS Noninferiority met on PFS and OS

J Clin Oncol. 2021 Nov 1;39(31):3441-3452.

Conclusions:

 Event-based analyses and AE burden scores demonstrated higher AE burden both overall and specifically for afib/flutter, hypertension, and hemorrhage with ibrutinib vs acalabrutinib
 AE for which both event-based outcomes and AE burden scores were higher with acalabrutinib was limited to headache

Blood Visual

Abstract

Zanubrutinib indication (百濟神州(BeiGene)

Adult with CLL or SLL

R/R Follicular lymphoma (in combination with obinutuzumab) ≥ 2 lines of systemic therapy.

Adult with R/R Mantle cell lymphoma treated with \geq 1 prior tx

Adult with R/R MZL treated with \geq 1 Anti-CD20 base Tx

Adult with Waldenström macroglobulinemia
Zanubrutinib or Ibrutinib in Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL)

Design: phase 3, open-label, randomized, controlled trial compared the efficacy and safety of zanubrutinib vs ibrutinib in patients with R/R CLL or SLL. **Pts**: 652 adults with R/R at least one previous line of therapy **Drugs**: zanubrutinib (160 mg twice daily) or ibrutinib (420 mg once daily) until the occurrence of disease progression or unacceptable toxic effects.

Engl J Med 2023;388:319-332

Months since Randomization

ROSEWOOD: A Phase II Randomized Study

Zanubrutinib Plus Obinutuzumab Vs Obinutuzumab in Patients With R/R Follicular Lymphoma

- Patients with R/R FL who had received ≥2 lines of therapy, including an anti-CD20 antibody and an alkylating agent.
- Pt (ZO, 145; O, 72), 2:1 to receive ZO or obinutuzumab (O).
- Results
 - Median study follow-up : 20.2 months.
 - ORR : 69% (ZO) vs 46% (O; P = .001), 18 months DOR : 69% (ZO) vs 42%
 - CR : 39% (ZO) Vs 19% (O)
 - Median PFS : 28.0 months (ZO) vs 10.4 months (O; hazard ratio, 0.50 ; P < .001).
- ADR : thrombocytopenia, neutropenia, diarrhea, and fatigue; incidences of atrial fibrillation and major hemorrhage were 3% and 1%, respectively.

Clin Oncol . 2023 Nov 20;41(33):5107-5117.

	Response/F	Patients (%)		
Subaroun	0	zo		Risk Difference, % (95% Cl)
Subgroup				
All patients in ITT	33/72 (46)	100/145 (69)		23 (9 to 37)
Age, years				
<65	14/32 (44)	58/83 (70)		26 (6 to 46)
≥65	19/40 (48)	42/62 (68)		20 (1 to 40)
<75	30/60 (50)	89/130 (68)	_	18 (4 to 33)
≥75	3/12 (25)	11/15 (73)		48 (15 to 82)
Sex				
Male	14/33 (42)	53/75 (71)		28 (9 to 48)
Female	19/39 (49)	47/70 (67)	· · · · · · · · · · · · · · · · · · ·	18 (-1 to 38)
Geographic region				
China	5/12 (42)	15/21 (71)		30 (-4 to 64)
Ex-China	28/60 (47)	85/124 (69)	_	22 (7 to 37)
Previous lines of thera	ру			
2-3	27/54 (50)	77/108 (71)		21 (6 to 37)
>3	6/18 (33)	23/37 (62)		29 (2 to 56)
Baseline ECOG PS				
0	17/31 (55)	64/86 (74)		20 (0 to 39)
≥1	16/41 (39)	36/59 (61)	_	22 (3 to 41)
Bulky disease: any targ	et lesion longest diam			
Yes	15/31 (48)	31/57 (54)		6 (-16 to 28)
No	18/41 (44)	69/88 (78)	_	35 (17 to 52)
Bulky disease: any targ	et lesion longest diam	eter ≥7 cm		
Yes	3/12 (25)	11/23 (48)		23 (-9 to 55)
No	30/60 (50)	89/122 (73)		23 (8 to 38)
Bulky disease: any targ	et lesion longest diam	eter ≥10 cm		
Yes	0/6 (0)	1/5 (20)	•	20 (-15 to 55)
No	33/66 (50)	99/140 (71)	_	21 (7 to 35)

FLIPI risk category										
Low (0-1)	3/9 (33)	21/29 (72)						•		39 (4 to 74)
Intermediate (2)	13/24 (54)	26/34 (76)					•			22 (-2 to 47)
High (≥3)	17/37 (46)	49/77 (64)					•			18 (-2 to 37)
Rituximab-refractory st	atus									
Refractory	14/36 (39)	47/78 (60)					•	-		21 (2 to 41)
Not refractory	19/36 (53)	53/67 (79)					-			26 (7 to 45)
Refractory status to the	e most recent line of th	erapy								
Refractory	11/29 (38)	29/47 (62)					•			24 (1 to 46)
Not refractory	21/42 (50)	66/93 (71)					•	-		21 (3 to 39)
Progression of disease	within 24 months of s	tarting the first line	of therap	У						
Yes	14/30 (47)	30/50 (60)								13 (-9 to 36)
No	15/35 (43)	55/74 (74)				-	-			32 (12 to 51)
Progression of disease	within 24 months of s	tarting the first line	of chemo	immunoth	erapy					
Yes	9/22 (41)	25/39 (64)					•			23 (-2 to 49)
No	14/31 (45)	40/59 (68)					•			23 (1 to 44)
Progression of disease	within 6 months of co	mpletion of the mo	st recent l	ine of ther	ару					
Yes	12/39 (31)	42/71 (59)								28 (10 to 47)
No	19/30 (63)	53/67 (79)								16 (-4 to 36)
Progression of disease	within 12 months of c	ompletion of the m	ost recent	line of the	rapy					
Yes	17/52 (33)	59/95 (62)								29 (13 to 46)
No	14/17 (82)	36/43 (84)			_	-				1 (-20 to 23)
			-75	-50	-25	0	25	50	75	
Clin Oncol 2022 N	lov 20:41/22):5107 5117					Percent				

Clin Oncol . 2023 Nov 20;41(33):5107-5117.

Percent

Zanubrutinib in relapsed/refractory mantle cell lymphoma: long-term efficacy and safety results from a phase 2 study (FDA approved in 2019)

AEs adverse events; CR complete response; DOR duration of response; MCL mantle cell lymphoma; NE not estimable; ORR overall response rate; OS overall survival; PFS progression-free survival; R/R relapsed/refractory.

Blood (2022)

3158.

139 (21): 3148-

Safety and efficacy of zanubrutinib in relapsed/refractory marginal zone lymphoma: final analysis of the MAGNOLIA study

Zanubrutinib in Waldenström Macroglobulinemia

FDA approved in 2019 for the treatment of relapsed/refractory MCL after at least 1 prior therapy¹

- Approval based on the results of an open-label, single-arm phase II trial showing high and durable ORR and CR rates with good tolerability²
- Zanubrutinib noninferior to ibrutinib in Waldenström macroglobulinemia in phase III ASPEN study³
 - Trend toward improved responses and less toxicity with zanubrutinib

AE Categories, n (%)	All Grades			
(Pooled Terms)	lbrutinib (n=98)	Zanubrutinib (n=101)		
Atrial fibrillation/flutter*	15 (15.3)	2 (2.0)		
Diarrhea (PT)	31 (31.6)	21 (20.8)		
Hemorrhage	58 (59.2)	49 (48.5)		
Major hemorrhage	9 (9.2)	6 (5.9)		
Hypertension	17 (17.3)	11 (10.9)		
Neutropenia*	13 (13.3)	30 (29.7)		
Infection	66 (67.3)	67 (66.3)		

Time-to-event analysis of atrial fibrillation/flutter events

1. Ibrutinib PI. 2. Song. Clin Canc Res. 2020;26:4216. 3. Tam. Blood. 2020;136:2038.

Pirtobrutinib (Jaypirca, Eli Lilly and Company) : 200mg qd

Trial Name	Pts (N)	Indication	Compar ative Protocol	ORR	PFS	Overall Survival	Adverse Events	Sourc e of Journ al
BRUIN	MCL (120 pts) 3 prior lines of therapy, with 93% having 2 or more prior lines.	Relapsed or refractory Mantle Cell Lymphoma (MCL)	Single- arm study; Pirtobruti	MCL: 50% ORR; CR:13%	MCL: Median PFS of 7.6 months; DOR:8.3 months	MCL: Median OS of 18 months;	fatigue, musculoskeletal pain, diarrhea, edema, dyspnea, pneumonia	Clin Cancer Res. 2024 Jan 5;30(1):1 7–22.
BRUIN Phase 1/2	CLL/SLL (317 pts)	Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma	nib monother apy	CLL/SLL: 72% ORR	CLL/SLL: Median PFS of 19.6 months	CLL/SLL: Median OS not reached	Fatigue (20%), diarrhea (17%), contusion (13%), neutropenia (10%)	NEJM: 2023;389: 33-44

Among these 247 patients, the mediag number of previous lines of therapy was 3 (range, 1 to 11), and 100 patients (40.5%) had also received a B-cell lymphoma 2 (BCL2) inhibitor such as venetoclax.

Benefit-risk assessment of pirtobrutinib for relapsed or refractory mantle cell lymphoma after a prior BTK inhibitor

Analysis of MCL is generally incurable and relapse.

Management

Clin Cancer

Res. 2024 Jan

diarrhea.

fibrillation or flutter.

- Condition Remission duration is generally longest after frontline therapy and successively shortens with subsequent lines.
- Efficacy • pirtobrutinib (120 pts with R/R MCL with prior BTK inhibitor treatment in BRUIN, a single-arm trial of pirtobrutinib monotherapy.
 - ORR 50% and CR 13% according to Lugano criteria. patients with R/R MCL with prior BTK • Median DOR : 8.3 months, supporting the potential for durable responses.

bleeding, grade 3–4 cytopenias, SPMs, and atrial

• There are limited effective treatment options in patients whose MCL relapses following a BTK inhibitor.

 Based on an evaluation of response rate and durability, pirtobrutinib demonstrates an advantage over available therapies for inhibitor exposure.

Risk and Risk • In 583 pts in the BRUIN trial, the most common ARs (• The risks are acceptable in patients with \geq 20%): neutropenia, anemia, thrombocytopenia, fatigue, R/R MCL with an indication for treatment. musculoskeletal pain, lymphopenia, bruising, and

 Warnings and Precautions : infections, hemorrhage, cytopenias, atrial fibrillation or • Pirtobrutinib include serious and opportunistic infections, flutter, and SPMs.(second primary malignancy)

•The tolerability of pirtobrutinib in patients

• Duration of exposure was limited (3.8 months in the MCL with previous intolerance to a BTK inhibitor 5;30(1):17–22. safety population). is not well defined.

Adverse Events Associated With BTK Inhibitors in CLL

	BTK Inhibitor (as Monotherapy or in Combination)					
Patients With Any Grade AEs, %	Ibrutinib (in CLL clinical trials)	Acalabrutinib (in CLL clinical trials)	Zanubrutinib (in MCL clinical trials)†			
Atrial fibrillation or flutter	5-7	3.6-5	2			
Hemorrhage	19-31	16-20	11			
Diarrhea	34-59	18-39	23			
Arthralgias	16-41	8-22	14			
Musculoskeletal pain*	25-61	15-37	14			
Hypertension	11-42	3.2-5	12			
Rash	21-49	18-25	36			
Headache	12-40	9-26	4.2			
Infection (grade \geq 3)	1-12	14-22	0-10			

*Includes myalgias.

[†]Zanubrutinib is not currently FDA-approved for the treatment of CLL, and data from zanubrutinib in CLL clinical trials is not published.

a. Imbruvica (ibrutinib) [PI]. 2020; b. Calquence (acalabrutinib) [PI]. 2019; c. Brukinsa (zanubrutinib) [PI]. 2019.

Adverse Events of Available BTK Inhibitors: Cytopenias, Infection, Bruising and Hemorrhage, Lymphocytosis

Ibrutinib

Cytopenias (Grade 3/4)

- Neutropenia 13% to 29%
- Thrombocytopenia 5% to 17%
- Anemia 0% to 13%

Infection (Grade 3-5)

14% to 29% of patients

Bruising and Hemorrhage

- Bleeding consistent with "hemostatic failure" with bruising and subcutaneous bleeding with minor trauma in up to 50%
- Grade \geq 3 hemorrhage: up to 6%

Lymphocytosis

Up to 77% of patients

Acalabrutinib

Cytopenias (Grade 3/4)

- Neutropenia 10% to 23%
- Thrombocytopenia 5% to 8%
- Anemia 5% to 11%

Infection (Grade 3-5)

11% to 18% of patients

Bruising and Hemorrhage

- Overall, bleeding events including bruising and petechiae of any grade occurred in approximately 30% of patients
- Grade \geq 3 hemorrhage: up to 3%

Lymphocytosis

26% of patients

Zanubrutinib

Cytopenias (Grade 3/4)

- Neutropenia 26%
- Thrombocytopenia 11%
- Anemia 8%

Infection (Grade 3-5)

• 27% of patients

Bruising and Hemorrhage

- Any-grade hemorrhage: 35%
- Grade ≥3 hemorrhage: 3.4%

Lymphocytosis

41% of patients

Adverse Events of Available BTK Inhibitors: GI, Musculoskeletal, and Other Common AEs

Ibrutinib

Gastrointestinal

Ē

- Diarrhea 34% to 63% (up to 5% grade ≥3)
- Nausea 21% to 31% (2% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 21% to 37% of patients (up to 6% grade ≥3)

Other Common AEs

- Rash 22% to 27% (up to 3% grade ≥3)
- Fatigue 21% to 41% (up to 5% grade ≥3)
- Headache 13% to 19% (up to 2% grade ≥3)

Acalabrutinib

Gastrointestinal

- Diarrhea 18% to 35% (up to 1.3% grade ≥3)
- Nausea 22% (0% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 16% to 23% of patients (1.1% grade ≥3)

Other Common AEs

- Rash 25% (<1% grade 3)
- Fatigue 15% to 23% (up to 1.9% grade ≥3)
- Headache 22% to 39% (up to 1.1% grade ≥3)

Zanubrutinib

Gastrointestinal

- Diarrhea 22% to 23% (0.8% to 3% grade 3)
- Nausea 13% to 18% (0% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 14% to 45% of patients (1.1% to 9% grade ≥3)

Other Common AEs

- Rash 21% to 36% (0% grade ≥3)
- Fatigue 21% to 31% (1% to 2.3% grade ≥3)
- Headache 4.2% to 18% (1% grade ≥3)

Adverse Events of Available BTK Inhibitors: Hypertension, Atrial Fibrillation, and Cardiac Arrhythmias

Ibrutinib

- Hypertension up to 19%
- Incidence of atrial fibrillation:
 - MCL: 11%

I≡

- CLL: 5% (8% all cardiac dysfunction)
- WM: 2% (7% all cardiac dysfunction)

Acalabrutinib

- Hypertension up to 5%
- Incidence of atrial fibrillation:
 - MCL: 0% (8% other cardiac dysfunction)
 - CLL: 3%
 - WM: 5%

Zanubrutinib

- Hypertension 12% to 14%
- Atrial fibrillation and atrial flutter have occurred in 2.8% (grade ≥3: 0.8%)

BTK Inhibitor AE Management: Bleeding and Infections

Hemorrhage/Bleeding

Ę

- Increased risk of bleeding on concomitant anticoagulant or antiplatelet therapy
- Manage low-grade bleeding with supportive care
- Manage significant bleeding by holding BTK inhibitor, consider platelet transfusion
- Consider risks and benefits of withholding for 3-7 days before and after surgery
- Requires initial and ongoing patient education

Infections

- Cases of progressive multifocal leukoencephalopathy, *P jirovecii* pneumonia, herpes simplex virus, hepatitis B reactivation have occurred
- Immunocompromise or long-term corticosteroid use increases risk; consider prophylaxis
- Monitor and evaluate patients for fever and infections; treat appropriately
- No standard guidelines/ recommendations for antimicrobial prophylaxis

Ibrutinib PI. Acalabrutinib PI. Zanubrutinib PI. Moore. J Adv Pract Oncol. 2021;12:439. Stephens. Blood. 2019;133:1298. Rogers. J Adv Pract Oncol. 2017;8:97. National Comprehensive Cancer Network. Clinical practice guidelines in oncology: chronic lymphocytic leukemia/small lymphocytic lymphoma. v.4.2021. nccn.org. Accessed August 4, 2021.

BTK Inhibitor AE Management: Lymphocytosis, Headache, Rash, and Second Primary Malignancies

Lymphocytosis

 Presents in initial few weeks of therapy, typically resolves within 2 mo

Headache

- Typically low grade, observed early in therapy, and resolves over 1-2 mo
- Generally well managed with analgesics (eg, acetaminophen, caffeine supplements)
- More frequent with acalabrutinib
- Avoid NSAIDs due to increased risk of bleeding

Rash

- May be asymptomatic petechial, or palpable, eruptive pruritic rash with pustules
- Eruptive rash management: topical antihistamines, corticosteroids
- Severe cases may require oral antihistamines or corticosteroids, plus dose interruption or reduction
- Second primary malignancies
 - Most common: skin cancer
 - Advise protection from sun exposure, and encourage regular cancer screening

Ibrutinib PI. Acalabrutinib PI. Zanubrutinib PI. Moore. J Adv Pract Oncol. 2021;12:439. Stephens. Blood. 2019;133:1298. Rogers. J Adv Pract Oncol. 2017;8:97. National Comprehensive Cancer Network. Clinical practice guidelines in oncology: chronic lymphocytic leukemia/small lymphocytic lymphoma. v.4.2021. nccn.org. Accessed August 4, 2021.

Risk Factors for Developing Atrial Fibrillation

- Hypertension
- Heart failure
- Diabetes mellitus
- Age
- Obesity
- Excess alcohol consumption
- Valvular heart disease, murmur

- COPD
 - Hyperthyroidism
 - Obstructive sleep apnea
 - Chronic kidney disease
- Acute infections

- Careful history and assessment—numerous risk score calculators
- 2. Optimize modifiable factors
- 3. Reassess on regular basis
- 4. Educate patient and caregivers

BTK Inhibitors: Cardiovascular Adverse Event Management

Atrial fibrillation/flutter

Ę

- Regularly monitor for cardiac arrythmias;
 ECG if symptoms develop (eg, palpitations, lightheadedness, syncope, chest pain) or new-onset dyspnea
- Cardiology comanagement recommended
- Not an absolute indication to discontinue
 BTK inhibitors
- Use anticoagulation with caution
- Manage cardiac arrythmias as appropriate
- For persistent atrial fibrillation, consider dose modification

Ibrutinib PI. Acalabrutinib PI. Zanubrutinib PI. Rogers. J Adv Pract Oncol. 2017;8:97. National Comprehensive Cancer Network clinical practice guidelines: CLL/SLL (v4.2021). Dickerson. Blood. 2019;134:1919.

- Hypertension
 - Document baseline blood pressure
 - Monitor for new/ uncontrolled hypertension
 - Initiate hypertensives as needed
 - New or worsening hypertension increases risk of major cardiovascular events

BTK Inhibitors: Musculoskeletal Adverse Event Management

- Arthralgias/Myalgias
 - Usually occur early in treatment course
 - Consider acetaminophen or short course of prednisone
 - Anti-inflammatory agents (eg, ibuprofen) should be avoided to minimize bleeding
 - Transition to selective BTK inhibitor can diminish or resolve arthralgias and myalgias

Ibrutinib PI. Acalabrutinib PI. Zanubrutinib PI. Rogers. J Adv Pract Oncol. 2017;8:97. National Comprehensive Cancer Network clinical practice guidelines: CLL/SLL (v4.2021).

- Other Musculoskeletal AEs
 - Musculoskeletal pain
 - Muscle spasms
 - Treat like arthralgias and myalgias

Drug-Drug Interactions of BTK Inhibitors

Dose Modification Recommendations

	Ibrutinib ^[a]	Acalabrutinib ^[b]	Zanubrutinib ^[c]
Moderate CYP3A4 inhibitor	280 mg daily	100 mg daily	80 mg twice daily
Voriconazole 200 mg twice daily Posaconazole suspension 100 mg once daily, 100 mg twice daily, or 200 mg twice daily	140 mg daily		80 mg daily
Posaconazole suspension 200 mg TID or 400 mg twice daily Posaconazole IV 300 mg once daily Posaconazole delayed-release tablets 300 mg once daily	70 mg daily		80 mg daily
Other strong CYP3A4 inhibitors	Avoid use; if	short-term (≤ 7 days) in	terrupt treatment
Strong CYP3A4 inducers	Avoid use	Avoid use; if unable 200 mg twice daily	Avoid use

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa™ (zanubrutinib) [PI]. 2019.

Impact on AEs and Treatment Efficacy

- CYP3A4 inducers (eg, rifampin) and inhibitors (eg, itraconazole)
 - Medications
 - Herbal supplements
 - Foods
- P-gp substrates
- PPIs, H2-receptor antagonists, and antacids

Concurrent Medications With Overlapping Toxicities

May Increase Likelihood of Complications and Impact Ability to Stay on BTK Inhibitor Therapy

Anticoagulants ^[a-c]	 DOACs LMWH Warfarin (contraindicated in patients with blood dyscrasias)
Antiplatelets ^[a-c]	 Aspirin P2Y12 receptor blockers NSAIDs SSRIs
Atrial fibrillation ^[a-c]	 Verapamil Diltiazem Amiodarone Digoxin
Infection ^[a-c]	Azole antifungals
Arthralgia, myalgia, headache ^[a-c]	 NSAIDs Aspirin-containing products
GI toxicity ^[a-c]	 PPIs H2RAs Antacids
OTC products and supplements	 Vitamin E^[d] Fish oil^[d] Flaxseed oil

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa[™] (zanubrutinib) [PI]. 2019; d. Lipsky A, et al. *Hematology Am Soc Hematol Educ Program*. 2020;2020:336-345.

Recommendations to Reduce Drug–Food Interactions With BTK Inhibitors

BTK Inhibitor	How Supplied	Recommended Dosage and Administration
Acalabrutinib	100-mg capsules	 100 mg orally twice daily Can be taken with or without food Advise patients to swallow capsules whole with water
Ibrutinib	Capsules: 70 mg, 140 mg Tablets: 140 mg, 280 mg, 420 mg	 Advise patients to swallow capsules whole with water Do not cut, crush, or chew the tablets The administration of ibrutinib with a high-fat and high-calorie meal increased ibrutinib C_{max} by 2- to 4-fold and AUC by approximately 2-fold, compared with administration of ibrutinib after overnight fasting
Zanubrutinib	80-mg capsules	 160 mg twice daily or 320 mg once daily Can be taken with or without food Advise patients to swallow capsules whole with water

BTK Inhibitor Drug–Drug Interactions

Dosing Recommendation by Inhibitors/Inducers	Ibrutinib	Acalabrutinib	Zanubrutinib
Strong CYP3A inhibitor	 Avoid concomitant use Dose modification is recommended If strong inhibitor intended for short-term use (eg, up to 7 days as anti-infectives), hold ibrutinib 	 Avoid concomitant use Dose modification is recommended If strong inhibitor intended for short-term use (eg, up to 7 days as anti-infectives), hold acalabrutinib 	 80 mg once daily Interrupt dose as recommended for adverse reactions
Moderate CYP3A inhibitor	 280 mg once daily 	 100 mg once daily 	 80 mg twice daily Modify dose as recommended for adverse reactions
Strong CYP3A inducer	 Avoid concomitant use 	 Avoid concomitant use If inducers can not be avoided, increase acalabrutinib dose to 200 mg every 12 hr 	 Avoid concomitant use
Gastric acid–reducing agents	■ N/A	 Avoid coadministration with proton pump inhibitors Take acalabrutinib 2 hr before an H2 receptor antagonist Separate dosing by at least 2 hr before and after antacids 	• N/A
utinih PL Acalabrutinih PL Zanubrutinih PL			Slide credit: clinical options

Ibrutinib PI. Acalabrutinib PI. Zanubrutinib PI.

Slide credit: clinicaloptions.com

Conclusions

- BTK inhibitors have shown potent efficacy for treatment of CLL, MCL, MZL, and WM
 - Ibrutinib (first-generation BTK inhibitor) indicated in CLL, MCL, MZL, and WM
 - Acalabrutinib (second-generation BTK inhibitor) indicated in MCL and CLL
 - Zanubrutinib (third-generation BTK inhibitor) indicated in CLL, MCL, MZL, FL and WM
 - Pirtobrutinib (Non-covalent BTK inhibitors) : CLL, MCL
- BTK inhibitors are generally well tolerated but can be associated with treatment-related AEs such as diarrhea, bleeding, rash, and atrial fibrillation
- Open-ended treatment requires ongoing diligent management of AEs to ensure best outcomes
- Selecting optimal BTK inhibitor therapy for patients with CLL, MCL, MZL, and WM should be based on efficacy, safety profiles as well as patient preferences and comorbidities

Thank you for listening

癌症藥物(專業版) ▼ 癌症藥物(民眾版) ▼ 癌症另類輔助治療 ▼ 各類癌症治療 ▼ 兒童幹細胞移植 ▼

癌症臨床藥物資料庫

本資料庫由癌症臨床藥師方麗華所建立,關注癌症藥物、補充治療資訊、兒 童幹細胞移植等領域。 搜尋結果均以本站制定的格式編寫,提供專業人士及一般民眾更易閱讀的藥 物資訊!

Q

快速搜尋癌症藥物、用藥相關知識