None-Kinase inhibitors (ib)

Presenter : Lihua Fang pharmacist

None-Kinase inhibitors (ib)

- Nucleus : are applied to treat blood cancers, particularly due to their ability to modulate gene expression and tumor suppressor pathways
 - DNMTI (DNA Methyltransferase Inhibitor) : Azacitidine (Vidaza) · Decitabine (Dacogen)
 - HDAC (Histone deacetylases) Inhibitors
 - EZH2 inhibitor : Tazemetostat
 - Hedgehog pathway inhibitors
 - PARP Inhibitors (Poly ADP-ribose polymerase inhibitor)
 - XPO1 Inhibitor(exportin 1 (XPO1))
- Mitochondria
 - BCL2 Inhibitors :
 - IDH1, IDH2 Inhibitors
- Cytoplasm
 - KRAS Inhibitors
 - Proteasome inhibitors : (multiple myeloma)
 - IMiDS
 - STAMP Inhibitors

Nucleus : are applied to treat blood cancers, particularly due to their ability to modulate gene expression and tumor suppressor pathways

- DNMT inhibitor
- EZH2 inhibitor : Tazemetostat
- HDAC Inhibitors
- Hedgehog pathway inhibitors
- PARP Inhibitors (Poly ADP-ribose polymerase inhibitor) :
- XPO1 Inhibitor(exportin 1 (XPO1))

Epigenetic modifiers family 表觀遺傳修飾

These drugs modify DNA methylation, histone modifications, or chromatin remodeling to reactivate tumor suppressor genes or inhibit oncogene expression.

Epigenetic Modifier	Function	Effect on Gene Expression	FDA-Approved Drugs
DNMT Inhibitors (hypomethylation agents)	Block DNA methyltransferases (DNMTs), which add methyl groups to cytosines in CpG islands	Reactivates tumor suppressor genes silenced by hypermethylation	Azacitidine (Vidaza), Decitabine (Dacogen), Inqovi
HDAC Inhibitors	Block histone deacetylases (HDACs) , which remove acetyl groups from histones	Loosens chromatin structure, increasing gene transcription	Vorinostat (Zolinza), Romidepsin (Istodax), Panobinostat (Farydak), Belinostat (Beleodaq)
EZH2 Inhibitors	Block EZH2 , a component of the PRC2 complex that methylates histones to repress genes	Reactivates tumor suppressor genes silenced by histone methylation	Tazemetostat (Tazverik)

CpG islands : are genomic regions that contain a high frequency of cytosine and guanine nucleotides, connected with a phosphodiester bond. They are typically found in or near promoter regions of the genome, where transcription is initiated, and are present in as high as 40%–50% of the human genes.

Enhancing Tumor Suppressor Activity

DNMT inhibitor (DNA methyl transferase inhibitors)

•

 HDAC inhibitors (histone deacetylases inhibitor)

A model for the collaboration of epigenetic silencing enzymes

PRC2 複合體的核心、DNA 甲基轉移酶(DNMT)和組蛋白去乙酰化酶(HDAC)。在這個模型中,如果 K27 已經被乙酰化,HDAC 可能會首先去乙酰化它 (deacetylation),然後通過 PRC2 對 K27 的甲基化使目標 基因沉默。DNMT 也可能被 PRC2 招募,在對目標基因的 CpG DNA 進行甲基化後,使染色質狀態更加深度 沉默。Ac,乙酰化 (Acetylation); Me,甲基化(methylation)。

Acta Pharmacologica Sinica volume 35, pages161–174 (2014

DNA methyl transferase inhibitors (DNMT inhibitos)

previously untreated, elderly patients (pts) unfit for chemotherapy

- Hypomethylating agents work by desilencing epigenetically modified DNA, thus promoting the expression of silenced tumor suppressors.
- 5-azacytidine (<u>azacitidine</u>) and 5-aza-2'-deoxycytidine (<u>decitabine</u>) : higher-risk myelodysplastic syndrome (MDS).

Α

 \mathbf{B}

Proposed mechanism of action of azanucleosides

Drug	Trial Name (Pt N)	Indication	Comparative Protocol	Compar ative ORR	PFS (months)	OS (months)	Adverse Events	Source
Azacitidine (Vidaza)	CALGB 9221 (191 pts)	MDS	75 mg/m(2)/d sc for 7 days q 28 days vs BSC	60% vs 5% P <.001	Median time to leukemic transformation or death 21 vs 13 months P=0.007)	18 vs 11 months	Neutropenia , thrombocyto penia, febrile infections	J Clin Oncol . 2002 May 15;20(10):24 29-40
Decitabine (Dacogen)	DACO- 016 (485 pts)	AML poor- or intermedia te-risk cytogeneti cs.	decitabine 20 mg/m2 IV 1-hour 5 days/ 4 wks vs cytarabine 20 mg/m2 qd 10 days/ 4 wks).	17.8% vs 7.8% (P = .001).	7.7 months	7.7 vs 5.0 months; P = .108	Neutropenia , pneumonia, fatigue	J Clin Oncol. 2012 Jul 20; 30(21): 2670–2677

BSC : best supportive care, MDS : Myelodysplastic Syndromes, AML : Acute Myeloid Leukemia, CMML : Chronic Myelomonocytic Leukemia

Azacitidine for Low-/Intermediate-1 – Risk MDS

- Pyrimidine nucleoside analogue of cytidine
- Approved for use in MDS of the following subtypes
 - Refractory anemia or refractory anemia with ringed sideroblasts (if accompanied by neutropenia or thrombocytopenia or requiring transfusions)
 - Refractory anemia with excess blasts
 - Refractory anemia with excess blasts in transformation
 - Chronic myelomonocytic leukemia
- Causes hypomethylation of DNA and direct cytotoxicity on abnormal hematopoietic cells in the bone marrow

Am J Hematol.2023;98:1307–1325.

2024/10/16

Decitabine vs. Azacitidine in AML

Aspect	Azacitidine	Decitabine
Mechanism	DNA + RNA incorporation	DNA incorporation only
Dosing	75 mg/m² SC/IV daily x 7 days	20 mg/m² IV daily x 5 or 10 days
Preferred for	MDS-AML overlap; less proliferative AML	AML with higher blast count
Response rate (CR/CRi)	~20–30% alone 65–70% with venetoclax	25–35% alone 60–70% with venetoclax
Time to response	Often after 3–4 cycles	Slightly faster (~2 cycles)
Survival benefit	AZA-AML-001 trial showed OS benefit trend in older AML	No OS benefit vs. supportive care (DACO-016), but useful in real-world
Mutation coverage	Also active in TP53-mutant but variable	May be more effective in TP53- mutated AML (some data)

Comparison: Azacitidine vs. Decitabine for Clinical Applications

Category	Azacitidine (Vidaza)	Decitabine (Dacogen)
Class	Hypomethylating agent (HMA)	Hypomethylating agent (HMA)
FDA-Approved Indications	- MDS (all subtypes) - AML (in adults ≥65 years unfit for intensive chemo)	- MDS - AML (in adults ≥65 years unfit for intensive chemo)
Dosing Schedule	75 mg/m² SC or IV daily x 7 days q28 days	20 mg/m² IV daily x 5 days q28 days
Administration	Subcutaneous or IV	IV only
Clinical Efficacy	 AZA-001 trial showed improved OS in higher-risk MDS (24.5 vs. 15 months vs. conventional care). Response rate ~30–40%. Shown to delay transformation to AML. 	 DACO-016 trial showed similar ORR in older AML patients but no significant OS benefit over supportive care. Response rate ~25–30%. More commonly used in AML.
Use in AML	Effective in elderly/unfit AML patients, especially in combination with venetoclax .	Often preferred in AML with higher blast burden; synergistic with venetoclax .
Use in MDS	Gold standard for higher-risk MDS. Azacitidine associated with better OS and lower AML transformation rate than decitabine in MDS patient	Also effective, but azacitidine has more robust OS data in MDS.
Toxicity	Myelosuppression, GI side effects, injection site reactions	Myelosuppression, infections, GI symptoms
Clinical Considerations	Better OS data in MDS; subcutaneous option convenient for outpatient	Shorter infusion schedule; IV only

Lancet Oncol. 2009;10(3):223-232. J Clin Oncol. 2012;30(21):2670–2677.. Blood. 2022;140(12):1345–1377. N Engl J Med. 2020;383:617–629. Crit Rev Oncol Hematol. 2020;147:102889.

Azacitadine/Decitabine

- Indications: are approved for higher-risk MDS and AML, (not candidates for intensive chemotherapy).
- Regimens: Azacitidine : 75 mg/m²/day SC for 7 consecutive days in a 28-day cycle. Decitabine is usually given IV at 20 mg/m²/day for 5 consecutive days every 4 weeks.
- Efficacy:
 - In higher-risk MDS
 - Azacitidine vs observation (ORR : 15.7% vs 0%)
 - Decitabine (15 mg/m2 IV Q 8hrs for 3 days)vs supportive (ORR : 17% vs 0%)
 - In elderly AML patients
 - Azacitidine a median OS 10.4 vs 6.5 months with conventional care
 - Decitabine (20 mg/m(2) qd as a 1-hour iv infusion for 5 days): a median OS of 7.7 months vs 5.0 months with conventional care.(P=0.108)
- Adverse Drug Reactions: neutropenia, thrombocytopenia, anemia, febrile neutropenia, and gastrointestinal disorders. Azacitidine may also cause injection site reactions and constitutional symptoms.
- Both azacitidine and decitabine are effective treatment options for higher-risk MDS and AML, with comparable efficacy and safety profiles. The choice between the two agents may depend on patient-specific factors, administration preferences, and tolerability considerations.

Oncologist. 2005 Mar;10(3):176-8 Cancer . 2006 Apr 15;106(8):1794-803

Blood 2015 Jul 16;126(3):291-9,

- The nucleosome : two H2A-H2B dimers and H3-H4 tetramers) are wrapped by a stretch of 147 base pairs of double stranded DNA.
- The DNA and proteins bind together by Salt linkages (unstable ionic nature bonding). They are called Salt linkages because of specific metallic ions for example Ca++ and Mg++.
- Nucleosomes bind with the other Nucleosomes with the linker DNA (8 to 147 base pairs).
- Histone proteins have tails known as N-terminal tails. These tails are made up of specific amino acids and undergo various translational modifications preferably Acetylation, Phosphorylation, and Methylation with the help of these terminal tails.

EZH2 inhibitors : target the protein Enhancer of Zeste Homolog 2 (EZH2). EZH2 is a histone methyltransferase.

- EZH2 mutations and overexpression in cancer, leading to aberrant histone methylation and silencing of tumor suppressor genes.
- Early Discoveries (2000s 2010s)
 - The Polycomb Repressive Complex 2 (PRC2), including EZH2, was found to catalyze histone H3 lysine 27 trimethylation (H3K27me3), leading to chromatin silencing and cancer progression.
 - Somatic EZH2 gain-of-function mutations were discovered : germinal center B-cell (GCB) lymphomas, particularly follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL).
 - EZH2 overexpression: in solid tumors like prostate, breast, and ovarian cancers.
- Proof of Concept: The idea of targeting epigenetic regulators for cancer therapy gained traction.
- Selective EZH2 Inhibitors (2011-2015)
 - Tazemetostat (EPZ-6438): it selectively inhibited mutant and wild-type EZH2, leading to apoptosis in lymphoma cells.
 - Tazemetostat (Tazverik) approved for: Epithelioid sarcoma (2020, accelerated approval). Relapsed/refractory follicular lymphoma (FL) with EZH2 mutations (June 2020).
 - Valemetostat (DS-3201):A dual EZH1/EZH2 inhibitor was approved in Japan for adult T-cell leukemia/lymphoma (ATLL).

A model for the collaboration of epigenetic silencing enzymes

PRC2 複合體的核心、DNA 甲基轉移酶(DNMT)和組蛋白去乙酰化酶(HDAC)。在這個模型中, 如果 K27 已經被乙酰化,HDAC 可能會首先去乙酰化它,然後通過 PRC2 對 K27 的甲基化使目標基 因沉默。DNMT 也可能被 PRC2 招募,在對目標基因的 CpG DNA 進行甲基化後,使染色質狀態更 加深度沉默。Ac,乙酰化;Me,甲基化。

drug Name	Trial Name/Nu mber	Study Patient Number	Indication	Type of study	ORR	PFS	Overall Survival	ADR	Source of Journal
Tazemeto stat 800 mg bid po	Study E7438- G000-101 (NCT0189 7571)	99	Relapsed or refractory follicular lymphoma (FL) with or without EZH2 mutations	Single-arm, open-label study	69% in EZH2- mutant FL; 35% in EZH2 wild-type FL	Median PFS: 13.8 months (EZH2- mutant); 11.1 months (EZH2 wild-type)	Data not mature for overall survival	fatigue, nausea, decreased appetite, and diarrhea. Serious ADR: 37% of patients.	The Lancet Oncology, Volume 21, Issue 11, 1433 - 1442
Tazemeto stat 800 mg bid po		92(55 died) vs 181 (104 died)(Re al-World External Control Arm, ECA)	Comparison of PFS of Relapsed or Refractory Follicular Lymphoma	a Single-Arm Trial of Tazemetostv s a vs Real- World ECA third line or higher (3L+) treatments		median PFS was 12.2 months hazard ratio : 1.31			Blood (2024) 144 (Supplemen t 1): 6347.

PFS was numerically longer but not significantly different between tazemetostat monotherapy and realworld physician's choice of treatment

ECA: CD20-monotherapy, bendamustine-containing regimens, and lenalidomide plus CD20.

Epithelioid sarcoma is a rare and aggressive soft-tissue sarcoma subtype. Over 90% of tumors have lost INI1 expression, leading to oncogenic dependence on the transcriptional repressor EZH2.

Ē

Study Name	Patient Number	Indication	Comparative Protocol	Comparative ORR	Comparative PFS	Comparative Overall Survival	Adverse Events	Source
Study EZH- 202 (Cohort 5)	62 (loss of INI1 expressio n by immunohi stochemi cal analysis or biallelic SMARCB 1 (the gene that encodes INI1) alteration s	Metastatic or locally advanced epithelioid sarcoma not eligible for complete resection	Single-arm, open-label, 800 mg of Tazemetost at 800 mg bid until disease progression or unacceptabl e toxicity	26%had disease control at 32 weeks; 1.6% complete response, 13% partial response	Median PFS: 5.5 months (95% CI: 3.4–5.9) (At a median follow-up of 13·8 months)	Median OS: 19 months (95% CI: 11– not estimable)	Most common (\geq 20%): pain, fatigue, nausea, decreased appetite, vomiting, constipation; Grade \geq 3 ADR 48% anemia (13%), pain (7%), decreased weight (7%)	The Lancet Oncology,2020 Volume 21, Issue 11, 1423 - 1432

. 2017 Oct;108(10):2069-2078.

	DLBCL)
EZH1 plays a role in stem-like tumor cell survival in prostate, ovarian, and breast cancers	Expands therape potential beyond b cancers

Summary : In clinical practice

Limited Efficacy Compared to Other Treatments

- While tazemetostat showed moderate response rates, particularly in EZH2-mutant follicular lymphoma (FL) (ORR ~69%), its effectiveness in wild-type EZH2 patients was significantly lower (~35%).
- **Diffuse large B-cell lymphoma (DLBCL)**, EZH2 inhibition alone has **not produced durable responses**, limiting its role in frontline therapy.
- EZH inhibitors were approved without a comparative RCT (based on single-arm phase II studies)
- Lack of a Predictive Biomarker Beyond EZH2 Mutation
 - EZH2 mutations in 15-20% of follicular lymphoma (FL)
 - No reliable biomarkers to predict response in wild-type EZH2 patients
- Slow Approval in Other Indications
 - Tazemetostat has not yet gained FDA approval for solid tumors like sarcomas, prostate cancer, or ovarian cancer, where preclinical data was promising.
- Other EZH inhibitors have failed in late-stage trials.
- Competition From More Established Therapies/ more robust clinical data and a stronger survival benefit
 - In **follicular lymphoma**, alternative targeted therapies such as:
 - BTK inhibitors (e.g., zanubrutinib, acalabrutinib), BCL2 inhibitors (venetoclax), PI3K inhibitors (duvelisib, idelalisib)
- Potential Safety Concerns
 - relatively well tolerated, long-term concerns about secondary malignancies due to epigenetic modifications are still being studied.
- Combination approaches : are under investigation but could introduce new safety risks.

HDAC inhibitor (HDACi) effect on chromatin remodeling

Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are responsible for the balance of histone acetylation, and thereby regulate gene expression. Whereas HDACs deacetylate histones, promoting transcription repression, HATs are responsible for acetylating histones and inducing transcriptional activation. HDACi inhibits HDACs, and thus maintain an open chromatin conformation.

Developmental history

- 1980s–1990s: Early Discoveries and Preclinical Development Role of Histone Acetylation
- Focus on Cancer: Studies in the 1990s confirmed that HDAC inhibitors could re-activate tumor suppressor genes, suggesting their use as anti-cancer agents
 - Valproic acid is studied in cancer as a low-potency HDAC inhibitor.
- 2000s: First Generation HDAC Inhibitors
 - Vorinostat (2006) : cutaneous T-cell lymphoma (CTCL).
 - Romidepsin (2009): CTCL, relapsed/refractory peripheral T-cell lymphoma (PTCL) Withdrawal: In 2021.
- 2010s: Expansion of Indications and Combination
 - Belinostat (2014): PTCL. Combining belinostat with chemotherapy : angioimmunoblastic T-cell lymphoma (AITL)
 - Panobinostat (2015): Approved for relapsed/refractory multiple myeloma, (combining with bortezomib and dexamethasone)
- Killed by brentuximab vedotin for peripheral T-cell lymphoma (PTCL)

Romidepsin was named based on its natural product origin and structure (a depsipeptide)

HDAC (histone deacetylases) inhibitors

Nature Reviews | Drug Discovery

- In tumors, HDACs : in favor of deacetylation and tightening of histones, leading to epigenetic silencing. DNA methylation and histone deacetylation work in concert in gene silencing because of direct binding interactions between DNMTs and HDACs.
- HDACIs are able to induce cell cycle arrest, promote differentiation, and hyperacetylate
- Vorinostat : advanced cutaneous T-cell lymphoma (CTCL) as a third-line therapy
- Belinostat : peripheral T-cell lymphoma

FARYDAK® (panobinostat) capsules may help turn on tumor suppression in multiple myeloma

Histone deacetylase (HDAC) overexpression, detected across multiple myeloma cell lines, promotes a closed chromatin structure, which may reduce expression of tumor suppressor genes and increase myeloma cell growth and proliferation in vitro ³⁻⁷ FARYDAK, an HDAC inhibitor, may promote an open chromatin structure, increasing gene expression in vitro, including tumor suppressor genes that induce cell cycle arrest and/or apoptosis of some transformed cells^{1,5-7}

	Romidepsin Pts: 421	Brentuximab Vedotin ECHELON-2 CD 30
Indication	Ro-CHOP Phase III Study Previously Untreated Peripheral T-Cell Lymphoma (PTCL)	phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma
Comparative Regimens	Ro-CHOP Versus CHOP	A+CHP vs CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) 6-8 cycles
Overall Response Rate (ORR)	63% vs 60%	59% vs 50%
Median Progression-Free Survival (PFS)	12.0 months vs 10.2 months (P = .096)	5-year PFS rates were 51.4% vs 43.0% (CHOP) (hazard ratio = 0.70),
Overall Survival (OS)	51.8 vs 42.9 months	5-year OS: 70.1%(A+CHP) vs 61.0%
Adverse Reactions	thrombocytopenia (50% vs 10%), neutropenia (49% v 33%), anemia (47% v 17%), and leukopenia (32% v 20%)	Peripheral neuropathy was resolved or improved in 72% of patients in the A+CHP arm and 78% in the CHOP arm.
Source	J Clin Oncol. 2022 Jan 20;40(3):242-251 (voluntarily withdrew the PTCL indication from the U.S. market in 2021,)	Ann Oncol . 2022 Mar;33(3):288-298.

Drug Name	Trial Name (Patients)	Indication	Comparative Protocol	ORR	PFS	OS	Adverse Reactions	Source
Vorinostat 400 mg qd	Olsen et al. (74)	persistent, progressive, or recurrent T-Cell Lymphoma (CTCL)	Monotherapy	29.7%	Median: 4.9 months		Fatigue, diarrhea, nausea, thrombocyt openia	J Clin Oncol . 2007 Jul 20;25(21):310 9-15
Belinostat 1,000 mg/m(2) iv 30-minute infusions on to 5 every 21 days.	BELIEF Trial (129)	Relapsed/Ref ractory PTCL	Monotherapy	26%	Median: 1.6 months	Median OS : 7.9 months	Cytopenia, dyspnea, fatigue	J Clin Oncol . 2015 Aug 10;33(23):249 2-9.
Panobinosta 20 mg starting dose once every other day for 3 doses each week		R/R multiple myeloma with one to three previous treatments.	±Panobinostat with Bortezomib/De xamethasone	59.6%	11 months (vs 6 months)	40.3 months vs 35.8 2 previous regimens (bortezomib and an immunomodulat ory drug, m OS 25.5 vs 19.5 months	Diarrhea, fatigue, nausea, peripheral edema	Lancet Haematol . 2016 Nov;3(11):e50 6-e515

Hedgehog Pathway Inhibitors

- 刺蝟(Hh)基因於1970年 代由研究胚胎發育的研究人員 首次在黑腹果蠅中發現。
- 1996年,在哺乳動物中發現了 Sonic Hedgehog (Shh) 信 號通路,揭示了它在細胞分化 和胚胎模式中的作用。
- 異常的 Hedgehog 信號與基底 細胞癌 (BCC) 和髓母細胞 瘤(Medulloblastoma)有關

Year 25 Basal Cell Carcinoma Year 24 Squamous Cell Carcinoma

Year 9.5 Melanoma

Discovery of the Hedgehog Pathway

- Mutations in PTCH1 (a negative regulator of the Hh pathway) were found to drive uncontrolled cell growth in BCC.
- The Hh pathway is tightly regulated by two transmembrane proteins, patched (PTCH), which is a negative regulator, and smoothened (SMO), a positive regulator
- Drug discovery efforts targeted Smoothened (SMO), a key activator of the Hh pathway, leading to the first generation of inhibitors.
- First-Generation Hedgehog Pathway Inhibitors (2006-2012): Vismodegib (Erivedge®) in 2012 for advanced basal cell carcinoma (BCC).
- Sonidegib (Odomzo®) : locally advanced BCC (2015)
- Glasdegib (Daurismo®) : AML combined with lowdose cytarabine. aged ≥ 75 years or with comorbidities precluding intensive induction chemotherapy.

Figure 1 | Hedgehog signalling pathway and vismodegib. a | Binding of a Hedgehog ligand to the 12-transmembrane receptor Patched homologue 1 (PTCH1) prevents PTCH1-mediated inhibition of signalling by the seven-transmembrane protein Smoothened homologue (SMO), leading to activation of the GLI family of transcription factors and the regulation of target genes^{2,5}. Vismodegib inhibits this pathway by binding to SMO. b | Structure of vismodegib, which was discovered through optimization of a class of 2-pyridyl amides³.

Nat Rev Drug Discov 11, 437-438 (2012

Acute myeloid leukemia (AML)

a complex disease characterized by genetic and clinical heterogeneity and high mortality

- Traditional chemotherapy : 3+7
- FLT3 inhibitors midostaurin and gilteritinib
- CPX-351 (liposomal cytarabine and daunorubicin)
- Gemtuzumab ozogamicin (GO, anti-CD33 monoclonal antibody conjugated with calicheamicin)
- IDH1/IDH2 inhibitors ivosidenib and enasidenib
- Hedgehog inhibitor Glasdegib
- BCL-2 inhibitor venetoclax.

Leukemia . 2019 Feb;33(2):379-389

Drug	Trial Name	Study Patient Number	Indication	Comparativ e Protocol	Comparative ORR	Comparative PFS	Comparati ve OS	Adverse Events	Source
Vismodegib	ERIVANCE	104	Metastatic and locally advanced basal cell carcinoma	Single-arm study	mBCC: 30.3% laBCC: 42.9%	mBCC: 9.5 months laBCC: 12.9 months	Not reached	Muscle spasms (68%), alopecia (63%), dysgeusia (51%), weight loss (46%), fatigue (36%)	NEJM 2012;366(2 3):2171- 2179.
Sonidegib	BOLT	230	Locally advanced and metastatic basal cell carcinoma	Randomized (200 mg vs. 800 mg)	laBCC: 44% (200 mg), 38% (800 mg) mBCC: 15% (200 mg), 17% (800 mg)	laBCC: 22.1	Not reached	Muscle spasms (54%), alopecia (49%), dysgeusia (44%), nausea (38%), fatigue (35%)	Lancet Oncol. 2015;16(6): 716-728.
Glasdegib	BRIGHT 1003	115	Newly diagnosed acute myeloid leukemia (AML) or high- risk myelodysplast ic syndrome	Randomized (LDAC ± glasdegib)	17% (glasdegib + LDAC) vs. 2.3% (LDAC alone)	4.9 months (glasdegib + LDAC) vs. 2.3 months (LDAC alone)	8.8 months (glasdegib + LDAC) vs. 4.9 months (LDAC alone)	Anemia (43%), fatigue (36%), hemorrhage (29%), febrile neutropenia (27%), thrombocytopen ia (27%)	Leukemia. 2019;33(2): 379-389.

Note: mBCC = *metastatic basal cell carcinoma; laBCC* = *locally advanced basal cell carcinoma; LDAC* = *low-dose cytarabine.* These studies highlight the efficacy and safety profiles of Hedgehog pathway inhibitors across different cancer types.

Comparison of Vismodegib and Sonidegib in Clinical Practice

Feature	Vismodegib (Erivedge®)	Sonidegib (Odomzo®)
FDA Approval	2012	2015
Indication	Advanced Basal Cell Carcinoma (BCC) (metastatic or locally advanced)	Locally Advanced BCC in patients not candidates for surgery/radiotherapy
Trial Data	ERIVANCE (mBCC: 30.3% ORR, laBCC: 42.9% ORR)	BOLT (laBCC ORR: 44% with 200 mg dose)
Dosing	150 mg orally once daily	200 mg orally once daily
Half-Life	~4 days	~28 days (longer duration)
Metabolism	Primarily CYP3A4, also involves CYP2C9	Mainly CYP3A4
Common Adverse Effects	Muscle spasms (68%), alopecia (63%), dysgeusia (51%), weight loss (46%)	Muscle spasms (54%), alopecia (49%), dysgeusia (44%), nausea (38%)
Teratogenicity	High risk (Boxed warning for embryo-fetal toxicity)	High risk (Boxed warning for embryo-fetal toxicity)
Resistance Concerns	Resistance mutations in SMO reported in some cases	Similar resistance mechanisms, but long half-life may help maintain efficacy
Food Effect	No significant effect	Food increases absorption, recommended fasting state

Conclusion: Hedgehog Pathway Inhibitors in Clinical Practice

- Key Clinical Roles of Hedgehog Inhibitors
 - Vismodegib & Sonidegib: Effective for locally advanced and metastatic BCC, particularly in patients ineligible for surgery or radiation.
 - Glasdegib: Used in AML as part of combination therapy with low-dose cytarabine (LDAC), targeting leukemic stem cells to improve chemotherapy outcomes.
- Mechanistic Differences in Clinical Use
 - Vismodegib and Sonidegib target tumor cells in solid tumors (BCC).
 - **Glasdegib targets leukemia stem cells**, disrupting the **tumor microenvironment** in hematologic malignancies (AML).
- Challenges & Limitations
 - Drug Resistance: Mutations in SMO (Smoothened) can lead to resistance.
 - Adverse Effects: muscle spasms, alopecia, dysgeusia, and fatigue
 - Teratogenicity: warning for embryo-fetal toxicity
- Clinical Impact Summary
 - Hedgehog inhibitors provide targeted therapy options where conventional treatments are limited.

XPO1 inhibitor

Selinexor (XPOVIO) : selective inhibitor of nuclear export: Unselective bullet for blood cancers

- **XPO1 (Exportin 1)**, also known as **CRM1(**chromosome maintenance 1 protein (CRM1)), is a nuclear export protein responsible for transporting various tumor suppressor proteins (e.g., p53, p21, Rb) and growth regulatory proteins from the nucleus to the cytoplasm.
- Overexpression of XPO1 is found in many cancers and is associated with poor prognosis.
- By **inhibiting XPO1**, Tumor suppressor proteins are retained in the nucleus, enhancing their ability to induce cell cycle arrest and apoptosis in malignant cells.
- Selinexor (XPOVIO), a selective inhibitor of nuclear export (SINE)
 - R/R multiple myeloma and R/R diffuse large B-cell lymphoma.

Selinexor - a selective inhibitor of nuclear export

Exportin 1 protein (XPO1) regulates nuclear export of key tumor suppressor proteins (p53, p73, FOXO, pRB, BRCA1, and PP2A), growth regulatory and anti-inflammatory proteins as well as oncoprotein mRNAs. Malignant cells that overexpress XPO1 move these molecules out of the cell's nucleus. Therefore, tumor suppressor proteins (TSPs) lose their ability to identify and initiate the death of cancer cells and growth regulatory proteins along with oncoproteins (oncoprotein mRNAs are translated into oncoproteins in cytoplasm) which allow cancer cells to grow uncontrollably.

Blood Reviews 46 (2021) 100758
I rial Name	Patient Number	Indication	Comparative Protocol	Comparati ve ORR	Comparative PFS	Comparati ve OS	Dose and Schedule	Adverse Events
STORM Part 2	122	Relapsed/Refr actory MM (penta- refractory)	Selinexor (80 mg) + Dexamethasone (20 mg) twice weekly	ORR: 26.2%	Median PFS: 3.7 months	Median OS: 8.6 months	Selinexor 80 mg + Dexamethaso ne 20 mg twice weekly	Nausea, fatigue, decreased appetite, diarrhea, thrombocytope nia, anemia
BOSTON	402	Relapsed/Refr actory MM (≥1 prior therapy)	Selinexor (100 mg) + Bortezomib (1.3 mg/m ²) + Dex (20 mg) weekly vs. Bortezomib (1.3 mg/m ²) + Dex (20 mg) twice weekly	ORR: 76.4% (SVd) vs. 62.3% (Vd)	Median PFS: 13.9 months (SVd) vs. 9.5 months (Vd)	Median OS: Not reached	Selinexor 100 mg weekly; Bortezomib 1.3 mg/m ² weekly; Dex 20 mg twice weekly	Thrombocytop enia, fatigue, nausea, anemia, diarrhea
STOMP	48 (28 in SPd-40; 20 in SPd-60)	Relapsed/Refr actory MM (≥2 prior therapies)	Selinexor (40 mg or 60 mg) + Pomalidomide (4 mg) + Dex (40 mg) weekly	ORR: 50% (SPd-40) vs. 65% (SPd-60)	Median PFS: 18.4 months (SPd-40) vs. 9.5 months (SPd-60)	24-month OS: 64.2% (SPd-40) vs. 51.1% (SPd-60)	SPd-40: Selinexor 40 mg weekly; SPd-60: Selinexor 60 mg weekly; Pomalidomide 4 mg daily (days 1-21); Dex 40 mg weekly	Neutropenia, anemia, thrombocytope nia, fatigue, nausea, diarrhea

Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, openlabel, phase 2 trial

Trial Name	Pt Number	Indication	Dose schedule	ORR	PFS	OS	Adverse Events
SADAL	127	Relapsed/Refractory Diffuse Large B-Cell Lymphoma (R/R DLBCL)	Selinexor 60 mg orally on days 1 and 3 weekly	ORR: 28% CR :17%	Median PFS: 2.6 months	Median OS: 9.1 months	Thrombocytopenia (56%), neutropenia (25%), anemia (23%), fatigue (11%), hyponatremia (8%), nausea (6%)

Lancet Haematol. 2020 Jul;7(7):e511-e522.

Clinical Application and Role

- Novel Mechanism of Action
- Monotherapy Approval: Unlike many other lymphoma treatments that require combination therapy, Selinexor was approved as a single-agent therapy.
- Potential for Combination Therapy .
- Adverse Events: While effective, Selinexor is associated with hematologic toxicities, necessitating careful patient monitoring and dose adjustments.
- Ongoing research may further refine its role in combination regimens.

Mitochondria

- BCL2 Inhibitors : venetoclax
- IDH1 inhibitors : Ivosidenib (Tibsovo)
- IDH2 Inhibitors : Enasidenib (Idhifa)

Developmental history of BCL-2

- **Discovery of BCL-2 gene :** discovered in the 1980s in follicular lymphoma (overexpressed due to chromosomal translocation)
- Understanding Apoptotic Pathways
 - BCL-2 was found as a larger family of proteins that regulate the balance between cell survival and death
 - Anti-apoptotic (e.g., BCL-2, BCL-XL) and pro-apoptotic (e.g., BAX, BAK) members.
- The Concept of BH3 Mimetics: By the early 2000s
 - blocking the interaction between BCL-2 and pro-apoptotic proteins could promote apoptosis in cancer cells.
 - BH3 mimetics, small molecules that mimic the action of pro-apoptotic proteins, targeting BCL-2.
- Development of Venetoclax (ABT-199)
 - **Breakthrough in Selectivity:** Venetoclax selectively inhibits BCL-2 without affecting BCL-XL, reducing the risk of thrombocytopenia (a side effect associated with BCL-XL inhibition).
 - Preclinical Studies: chronic lymphocytic leukemia (CLL) and other BCL-2-dependent cancers.
 - Clinical Trials: venetoclax to be highly effective in CLL, particularly in patients with 17p deletion, which is
 associated with poor prognosis.
- FDA Approval and Clinical Use (2016 Onwards)

Classifications of BCL-2 proteins according to conserved BCL-2 homology (BH) domains

Venetoclax: <u>B-cell lymphoma-2</u> (Bcl-2) protein

Kumar S, et al. ASCO 2015. Abstract 8576. Reproduced with permission.

Ę

Cytochrome C is critical for both **energy production** and the regulation of **cell death**.

unmutated (U-CLL) or mutated (M-CLL)

Ę

SMZL stands for Splenic Marginal Zone Lymphoma

The B cell receptor signalling pathway

Ę

Nat Rev Cancer . 2018 Mar;18(3):148-167

BCL2-inhibitor: Venetoclax

Targeting BCL-2 Overexpression:

Ē

•BCL-2 (B-cell lymphoma 2) is a protein that regulates cell death (apoptosis) and is frequently overexpressed in many B-cell malignancies. Effectiveness Across a Range of B-Cell Neoplasms:

•Venetoclax has shown efficacy in several B-cell cancers, including:

- Chronic Lymphocytic Leukemia (CLL) / Small Lymphocytic Lymphoma (SLL): high BCL-2 expression .(17p deletions or TP53 mutations)
- Acute Myeloid Leukemia (AML): Venetoclax in combination with other agents (like hypomethylating agents) to treat elderly or unfit AML patients, who often have BCL-2 overexpression.
- Diffuse Large B-Cell Lymphoma (DLBCL): with BCL-2 rearrangements.
- Mantle Cell Lymphoma (MCL): BCL-2 expression is common in MCL, in refractory or relapsed cases.
- **Follicular Lymphoma (FL)**: Venetoclax is explored in combination therapies due to its activity in this indolent B-cell lymphoma.
- **Multiple Myeloma**: particularly in patients with t(11;14) translocations, which upregulate BCL-2.

3. Synergy with Other Therapies: :

- **BTK inhibitors (e.g., ibrutinib)**: Combining venetoclax with BTK inhibitors (which block survival signals in B-cells) enhances the depth of response, especially in CLL.
- **Monoclonal antibodies (e.g., rituximab, obinutuzumab)**: alongside anti-CD20 antibodies (CLL and DLBCL).
- **Chemotherapy**: Venetoclax can sensitize cancer cells to chemotherapy (DLBCL).

4. Minimal Overlap in Toxicity:

Trial Name	Study Patients (n)	Indication	Comparative Protocol	Comparative ORR (%)		Comparative Overall Survival (months)	Adverse Events	Source
MURANO (NCT0200547 1)	389	Relapsed/Refractory CLL	Venetoclax + Rituximab vs BR	92% vs 72% (BR arm)	-	:	Neutropenia, diarrhea, URI	Blood. 2018; 132(23): 2446–2455
CLL14 (NCT0224294 2)	432	Treatment-Naïve CLL Clb : Chlorambucil	Venetoclax + Obinutuzumab vs Clb + Obinutuzumab	85% vs 71%	:	(Venetoclax arm)	Neutropenia, febrile neutropenia, thrombocytopeni a	N Engl J Med. 2020; 382: 2226- 2234
BELLINI (NCT0275559 7)	291	Relapsed/Refractory Multiple Myeloma	Venetoclax + Bortezomib vs Placebo + Bortezomib	82% vs 68%	22.4 vs 11.5	(Venetoclax arm)	Neutropenia, diarrhea, URI , anemia	Lancet Oncol 2020; 21: 1630-1642
M14-358 (NCT0220377 3)	145	Relapsed/Refractory AML (IDH1/IDH2 mutation)	Venetoclax + Azacitidine vs Azacitidine	67% vs 28%	14.7 vs 7.2 (Azacitidine arm)		Neutropenia, febrile neutropenia, nausea	Blood. 2019; 133(15): 1569-1579
VIALE-A (NCT0299352 3)	431	Newly Diagnosed AML (unfit for intensive chemo)	Venetoclax + Azacitidine vs Azacitidine	66% (Venetoclax arm) vs 28% (Azacitidine arm)	(Venetoclax arm)	(Azacitidine arm)	febrile	N Engl J Med. 2020; 383: 617-629

Clinical Impact Summary (BCL-2 Inhibitors)

- Key Clinical Roles of BCL-2 Inhibitors (Venetoclax)
 - effective in CLL, AML, and mantle cell lymphoma (MCL).
- Clinical Benefits and Impact
 - High Efficacy: Venetoclax, especially when combined with rituximab (CLL) or azacitidine (AML), has shown deep remissions and durable responses.
 - Chemo-Free Regimens: Allows targeted therapy approaches, reducing reliance on chemotherapy.
 - Overcomes Chemotherapy Resistance: Particularly effective in TP53-mutated and relapsed/refractory CLL and AML.
- Challenges & Limitations
 - A Tumor Lysis Syndrome (TLS): Due to rapid tumor cell apoptosis (careful dose escalation and monitoring).
 - Acquired Resistance: Resistance mechanisms (e.g., BCL-2 mutations, upregulation of MCL-1, BCL-xL) can lead to treatment failure.
 - A Combination Strategies Needed: To prevent resistance, combination therapy with BTK inhibitors (ibrutinib), hypomethylating agents (HMA), is being explored.
 - A Limited Solid Tumor Efficacy: Unlike in hematologic cancers, BCL-2 inhibitors have shown limited success in solid tumors due to redundant apoptosis pathways.

IDH1/2 inhibitors

Figure 2

A

To inhibit the mutated forms of the IDH1/2 enzymes, which are involved in cellular metabolism.

In mutant cells, these enzymes produce an oncometabolite called 2-hydroxyglutarate (2-HG).

- Elevated 2-HG levels inhibit various dioxygenases, including those involved in DNA and histone demethylation (such as TET enzymes), leading to widespread epigenetic changes.
- IDH1/2 inhibitors indirectly restore normal epigenetic regulation by reducing 2-HG production.

Mutations in isocitrate dehydrogenase genes (IDH1 and IDH2) are common in acute myeloid leukemia (AML), occurring in up to 30% of AML cases

Fig. 1. Mutant IDH1 and IDH2 (mIDH1 and mIDH2) produce the oncometabolite 2-hydroxyglutarate (2-HG), which inhibits TET2 function and the Jumonji-C domain-containing (JMJC) family of histone lysine demethylases to block normal hematopoietic cell maturation

IDH2 (mutant isocitrate dehydrogenase 2 enzyme) inhibitors

- Enasidenib is a selective inhibitor of the mutant isocitrate dehydrogenase 2 (IDH2) enzyme.
- IDH2 plays a role in the citric acid cycle, converting isocitrate to α-ketoglutarate (α-KG).
- In cells with IDH2 mutations, the enzyme produces an oncometabolite called 2-hydroxyglutarate (2-HG) instead of α-KG. Accumulation of 2-HG leads to DNA and histone hypermethylation, which impairs cellular differentiation and contributes to the development of cancer, particularly acute myeloid leukemia (AML).

Fig. 1. Mutant IDH1 and IDH2 (mIDH1 and mIDH2) produce the oncometabolite 2-hydroxyglutarate (2-HG), which inhibits TET2 function and the Jumonji-C domain-containing (JMJC) family of histone lysine demethylases to block normal hematopoietic cell maturation

A timeline depicting the decade of progress in IDH-mutated malignancies

WT1 (Wilms Tumor 1 protein) acts as a transcription factor that recruits TET2 (Ten-Eleven Translocation 2 protein) to DNA, allowing TET2 to modify DNA methylation patterns and regulate gene expression, essentially functioning as a tumor suppressor by controlling cell growth and differentiation; mutations in either WT1 or TET2 are often linked to the development of certain cancers, particularly acute myeloid leukemia (AML).

Feature	IDH1 Inhibitors	IDH2 Inhibitors
Target Enzyme	Mutant IDH1	Mutant IDH2
Mutation Location	Cytoplasm	Mitochondria
Approved Drugs	Ivosidenib (Tibsovo)	Enasidenib (Idhifa)
FDA-Approved Indications	 - AML with IDH1 mutation (newly diagnosed & relapsed/refractory) - IDH1-mutated cholangiocarcinoma - IDH1-mutated gliomas (investigation) 	- AML with IDH2 mutation (relapsed/refractory)
Mechanism of Action	Inhibits IDH1 mutant enzyme to restore normal differentiation	Inhibits IDH2 mutant enzyme to restore normal differentiation
Metabolite Reduction	Decreases (R)-2-HG production from IDH1	Decreases (R)-2-HG production from IDH2
Response Rate (AML)	ORR ~42% (monotherapy)	ORR ~40% (monotherapy)
Metabolism	Primarily hepatic (CYP3A4)主要 肝臟 (CYP3A4)	Hepatic (UGT1A1 metabolism) 肝臟 (UGT1A1 代謝)
Half-Life	~93 hours	~137 hours

IDH1 inhibitors (Ivosidenib)

Trial Name (Study Patient Number)	Indication	comparative Protocol	Comparative ORR	Comparative PFS	Comparative OS	Adverse Events	Source of Journal
AG120-C-001 (174 patients)	Relapsed/Refr actory AML with IDH1 mutation	Ivosidenib vs. Conventional Care	30.4% vs. 10.8%	2.8 months vs. 1.9 months	9.0 months vs. 4.7 months	Differentiation syndrome, QT prolongation, leukocytosis	New England Journal of Medicine 2018; 378(25): 2386-2398
AGILE (386 patients)	Newly Diagnosed AML with IDH1 mutation	Ivosidenib + Azacitidine vs. Azacitidine Alone	42% vs. 13%	5.3 months vs. 2.7 months	12.4 months vs. 8.9 months	Differentiation syndrome, fatigue, nausea	Lancet Oncology 2021; 22(9): 1444-1456
ClarIDHy (146 patients)	Advanced Cholangiocarci noma with IDH1 mutation	Ivosidenib vs. Placebo	2.4% vs. 0%	2.7 months vs. 1.4 months	10.8 months vs. 9.7 months	Nausea, diarrhea, fatigue	Lancet Oncology 2020; 21(6): 796-807
NCT02073994 (125 patients)	Glioma with IDH1 mutation	Ivosidenib vs. Conventional Care	11% vs. 5%	3.8 months vs. 1.7 months	13.6 months vs. 7.8 months	Nausea, diarrhea, fatigue, QT prolongation	Neuro-Oncology 2021; 23(9): 1553-1562

IDH2 inhibitors (mutant isocitrate dehydrogenase 2 enzyme) inhibitors : Enasidenib)

Trial Name (Study Patient Number)	Indication	Comparative Protocol	Comparative ORR	Comparative PFS	Comparative Overall Survival	Adverse Events	Source of Journal
AG221-C-001 (258 patients)	Relapsed/Refr actory AML with IDH2 mutation	Enasidenib vs. Conventional Care	19.3% vs. 14.3%	2.9 months vs. 2.0 months	8.8 months vs. 6.1 months	Differentiation syndrome, leukocytosis, hyperbilirubinemia	Lancet Oncology 2017; 18(7): 1061- 1075
AG221-C-002 (101 patients)	Untreated AML with IDH2 mutation (Elderly)	Enasidenib + Azacitidine vs. Azacitidine Alone	53% vs. 12%	6.4 months vs. 3.4 months	22.9 months vs 11.9 months	Differentiation syndrome, nausea, hyperbilirubinemia	Blood 2019; 134(1): 31-42
IDHENTIFY (252 patients)	Relapsed/Refr actory AML with IDH2 mutation	Enasidenib vs. Conventional Care	23.7% vs. 13.4%	3.7 months vs.2.6 months	10.8 months vs. 6.2 months	Differentiation syndrome, nausea, vomiting	J Clin Oncol 2021; 39(3): 266-277
AGILE (387 patients)	Newly Diagnosed AML with IDH2 mutation	Enasidenib + Azacitidine vs. Azacitidine Alone	37% vs. 13%	4.7 months vs.2.7 months	15.7 months vs. 10.0 months	Differentiation syndrome, fatigue, decreased appetite	Leukemia 2022; 36(6): 1642-1653

Differentiation syndrome

- Can be fatal.
- Symptoms : fever, dyspnea, hypoxia, pulmonary infiltrates, pleural or pericardial effusions, rapid weight gain or peripheral edema, hypotension, and hepatic, renal, or multi-organ dysfunction.
- Management : corticosteroid therapy and hemodynamic monitoring until symptom resolution.

Adverse Event	IDH1 Inhibitors (Ivosidenib)	IDH2 Inhibitors (Enasidenib)	Management
Differentiation Syndrome (DS)	~30% incidence	~14% incidence	Corticosteroids (Dexamethasone 10 mg IV/PO q12h for ≥3 days), diuretics, hold treatment if severe
QT Prolongation	Common (Monitor ECG)	Less frequent	Regular ECG monitoring, correct electrolytes (K+, Mg2+, Ca2+)
Hepatotoxicity	Mild to moderate	Risk of indirect hyperbilirubinemia (due to UGT1A1 inhibition)	Hold treatment for Grade 3+ hepatotoxicity, supportive care
Leukocytosis	May occur (transient increase in WBCs)	Less common	Hydroxyurea for WBC control if needed
GI Symptoms (Nausea, Diarrhea, Vomiting)	Mild	Common (especially diarrhea)	Supportive care: antiemetics, hydration, loperamide for diarrhea

Summary of IDH1 and IDH2 Inhibitors in Clinical Practice

- IDH1 and IDH2 inhibitors used in acute myeloid leukemia (AML) with IDH1 or IDH2 mutations.
 - by inhibiting mutant IDH enzymes, reducing 2-hydroxyglutarate (2-HG) accumulation, and allowing leukemic cells to differentiate into normal blood cells.
- Indications and Patient Selection (Requires molecular testing for IDH1/2 mutations.)
 - Ivosidenib (IDH1 Inhibitor) 500 mg qd : Relapsed/Refractory AML with IDH1 mutations, Newly diagnosed AML (unfit for intensive chemotherapy)
 - Enasidenib (IDH2 Inhibitor) 100 mg qd : Relapsed/Refractory AML with IDH2 mutations
- Response Rates:
 - Ivosidenib: **30–40%** complete remission (CR) in IDH1-mutant AML
 - Enasidenib: 20-40% complete remission (CR) in IDH2-mutant AML
- Overall Survival:
 - Improved survival in patients responding to treatment.
- Duration of Response:
 - 6–12 months on average, with some long-term responders.

Cytoplasm

- KRAS Inhibitors
- Proteasome inhibitors : (multiple myeloma)
- IMiDS
- STAMP Inhibitors

Developmental History of Immunomodulatory Drugs (IMiDs)

- The Thalidomide Tragedy and Rebirth (1950s–1990s)
 - 1950s: Thalidomide was initially developed in Germany (1953) as a sedative and was widely used for morning sickness in pregnant women.
 - 1960s: cause severe birth defects, leading to phocomelia (limb malformations) in newborns. This
 resulted in a global ban.
 - 1990s: Dr. Judah Folkman and Bart Barlogie, for its anti-angiogenic and immunomodulatory properties in treating multiple myeloma (MM) and leprosy.
- FDA Approval and Expansion of IMiDs (2000s)
 - 2003: Thalidomide received accelerated approval for relapsed/refractory MM based on studies showing improved survival in combination with dexamethasone.
 - 2005: Lenalidomide (Revlimid), a structural analog of thalidomide, was FDA-approved for myelodysplastic syndromes (MDS) and multiple myeloma.Compared to thalidomide, lenalidomide had fewer neurotoxic effects and enhanced anti-tumor activity.
- Next-Generation IMiDs and Expanding Applications (2010s–Present)
 - 2013: Pomalidomide (Pomalyst) was approved for relapsed/refractory multiple myeloma (RRMM) after lenalidomide and bortezomib failure.
 - 2019–2020: Research into novel cereblon-modulating drugs led to the fourth-generation IMiDs, including Iberdomide (CC-220) and Mezigdomide (CC-92480), designed for enhanced antimyeloma effects.
 - 2022: Iberdomide and Mezigdomide entered clinical trials for lenalidomide- and pomalidomide- refractory MM.

Proposed thalidomide mechanisms of action. Previously, it was thought that thalidomide has multiple targets, resulting in pleiotropic effects. However, it is now believed that thalidomide has a sole target (CRBN). Binding of IMiDs to CRL4CRBN causes breakdown of multiple neosubstrates such as Ikaros and SALL4, resulting in various effects.

Proc. Jpn. Acad., Ser. B 96 (2020)

Summary of Key FDA Approvals

Drug	FDA Approval Year	Indication
Thalidomide	1998	ENL, MM (restricted use)
Lenalidomide (Revlimid)	2005	MM, MDS, NHL
Pomalidomide (Pomalyst)	2013	RRMM
Iberdomide (CC-220)	In Trials	Advanced MM
Mezigdomide (CC- 92480)	In Trials	RRMM

Cancers 2024, 16(6), 1166

Immunomodulatory Drugs (IMiD)

Image Source: D'Souza C, et al. Front Immunol. 2021; https://doi.org/10.3389/fimmu.2021.632399

Myeloma cell death

Mechanism

Ļ

- Cereblon (CRBN) Binding: They target cereblon, leading to ubiquitination and degradation of key tumor-supportive proteins.
- T-Cell Activation & Immune Modulation: They enhance IL-2 production and activate NK cells, increasing anti-myeloma activity.
- Anti-Angiogenic Effects: IMiDs inhibit VEGF, reducing tumor blood supply.

Drug	Trial Name	Indication	Comparative	Comparative	Comparative	Comparative	Adverse	Source of
	(Pt N)		Protocol	ORR (%)	PFS (months)	OS (months)	Events	Journal
Thalidomide	1999 (n=84)	R/R multiple myeloma (RRMM)	Single-arm	32% (Thalidomide alone)	NA	13.0 (single arm)	Peripheral neuropathy, constipation, sedation, thromboemb olism	NEJM 1999;341:1565– 1571
Lenalidomide	MM-009 & MM-010, (n=353 & 351)		Lenalidomide + Dex vs Dexamethas one alone	60.6% vs 21.9%	11.1 vs 4.7	29.6 vs 20.2	Neutropenia, thrombosis, fatigue, rash	NEJM 2007;357:2123– 2132
Pomalidomid e	MM-003, JCO 2013 (n=455)	R/RMM after ≥2 prior therapies including lenalidomide & bortezomib	Pomalidomid e + Low-dose Dex vs High- dose Dex	31% vs 10%	4.0 vs 1.9	12.7 vs 8.1	Neutropenia, anemia, thrombocytop enia, fatigue	J Clin Oncol 2013;31(23):2691 –2697

Drug Class	Examples	Mechanism/Role
Proteasome Inhibitors (PI)	Bortezomib (V), Carfilzomib (K), Ixazomib	Block protein degradation; apoptosis
IMiDs / CELMoDs	Lenalidomide (R), Pomalidomide (P), Iberdomide (new)	Enhance T cell/NK function, degrade Ikaros/Aiolos
Steroids	Dexamethasone	Anti-inflammatory; enhance MM drug efficacy
Monoclonal antibodies	Daratumumab (anti-CD38), Isatuximab (anti-CD38), Elotuzumab (anti-SLAMF7)	ADCC, CDC, direct cytotoxicity
XPO1 Inhibitor	Selinexor	Nuclear export inhibition; induces apoptosis
Alkylators	Cyclophosphamide, Melphalan	DNA cross-linking; used in ASCT or elderly
Bispecifics / CAR-T	Teclistamab (BCMA × CD3), Ide- cel	Redirect immune cells to MM

Protocol	Candidate Situation	Overall Response Rate	Median Progression-Free	Combination Components
		(ORR)	Survival (PFS)	
VRd	Newly diagnosed,	89–97%	>4 years	Bortezomib + Lenalidomide
	transplant-eligible			+ Dexamethasone
KRd	Relapsed, 1–3 prior	87.1%	26.3 months	Carfilzomib + Lenalidomide
	therapies			+ Dexamethasone
Dara-VRd	Newly diagnosed,	87.9% CR or better	84.3% at 48 months	Daratumumab + Bortezomib
	transplant-eligible			+ Lenalidomide +
				Dexamethasone
IRd	Relapsed/refractory, ≥1 prior	78%	20.6 months	Ixazomib + Lenalidomide +
	therapy			Dexamethasone
Dara-Rd	Relapsed/refractory, 1–3	93%	Not reached (13.5-month	Daratumumab +
	prior therapies		follow-up)	Lenalidomide +
				Dexamethasone
Elo-Rd	Relapsed/refractory, 1–3	79%	19.4 months	Elotuzumab + Lenalidomide
	prior therapies			+ Dexamethasone
SVd	Relapsed/refractory, 1–3	76.4%	13.9 months	Selinexor + Bortezomib +
	prior therapies			Dexamethasone
Carvykti	Relapsed/refractory, ≥1 prior	N/A	45% reduction in death risk	Ciltacabtagene Autoleucel
	therapy			(CAR-T)
Blenrep + BorDex	Relapsed/refractory, ≥1 prior	N/A	42% reduction in death risk	Belantamab Mafodotin +
	therapy			Bortezomib +
				Dexamethasone

Specifically Targeting the ABL Myristoyl Pocket (STAMP) inhibitor an allosteric inhibitor (變構抑制劑)

 asciminib (Scemblix), for the treatment of Philadelphia chromosomepositive chronic myeloid leukemia (Ph+ CML).

Figure 1. Binding of the Myristoyl Site of the BCR-ABL1 Protein by Asciminib.

Autoinhibition of the ABL1 kinase occurs through engagement of the myristoyl-binding site by the myristoylated N-terminal — a negative regulatory motif that locks the ABL1 kinase in the inactive state (Panel A). On fusion of ABL1 to BCR, the myristoylated N-terminal is lost and the ABL1 kinase is activated (Panel B). By allosterically binding the myristoyl site, asciminib mimics myristate and restores inhibition of BCR-ABL1 kinase activity (Panel C).

Study Name	Patient Number	Indication	Study Design	Overall Response Rate (ORR)	Progressio n-Free Survival (PFS)	Overall Survival (OS)	Adverse Events	Sourc e
ASCEMBL (NCT031067 79)	233	Ph+ CML in chronic phase (CP), previously treated with ≥2 TKIs	Phase III, multicenter, open-label, randomized	Major Molecular Response (MMR) at 24 weeks: 25.5% for asciminib 40mg bid vs. 13.2% for bosutinib	Not reached; hazard ratio for disease progression or death: 0.29 (95% Cl: 0.12– 0.69)	12-month OS: 98.4% for asciminib vs. 94.7% for bosutinib	Most common (≥20%): thrombocytopenia, neutropenia, anemia, headache, fatigue, nausea, diarrhea (50.6% vs 60.5%) DC (treatment discontinuation (5.8% vs 21.1%)	Blood . 2021 Nov 25;138(2 1):2031- 2041
ASC4FIRST (NCT049712 26) Asciminib in Newly Diagnosed Chronic Myeloid Leukemia	405	Newly diagnosed Ph+ CML-CP	Phase III, head-to- head, open-label, randomized	MMR at 48 weeks: 68% for asciminib 40mg bid vs. 49% for standard-of- care TKIs	Data not yet mature	Data not yet mature	ADR (≥20%): thrombocytopenia, neutropenia, anemia, headache, Myalgia nausea, diarrhea ADR & DC asciminib (38.0% and 4.5%,) vs imatinib (44.4% and 11.1%) and second- generation TKIs (54.9% and 9.8%).	NEJM 2024;391:8 85-898

癌症藥物(專業版) ▼ 癌症藥物(民眾版) ▼ 癌症另類輔助治療 ▼ 各類癌症治療 ▼ 兒童幹細胞移植 ▼

癌症臨床藥物資料庫

本資料庫由癌症臨床藥師方麗華所建立,關注癌症藥物、補充治療資訊,兒 童幹細胞移植等領域。 搜尋結果均以本站制定的格式編寫,提供專業人士及一般民眾更易閱讀的藥 物資訊!

Q

快速搜尋癌症藥物、用藥相關知識